Поделиться
Непрерывные случайные величины
Опубликовал Wikimatik , 3 Января 2017 по предмету "Теория вероятностей"

Непрерывные случайные величины

В теории вероятностей приходится иметь дело со случайными величинами, все значения которых нельзя перебрать. Например, нельзя взять и «перебрать» все значения случайной величины $X$ — время службы часов, поскольку время может измеряться в часах, минутах, секундах, миллисекундах, и т.д. Можно лишь указать некоторый интервал, в пределах которого находятся значения случайной величины.

Непрерывная случайная величина — это случайная величина, значения которой целиком заполняют некоторый интервал.

Функция распределения непрерывной случайной величины

Поскольку перебрать все значения непрерывной случайной величины не представляется возможным, то задать ее можно с помощью функции распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет  вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$.

Свойства функции распределения:

1. $0\le F\left(x\right)\le 1$.

2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$.

3. $F\left(x\right)$ — неубывающая.

4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 1. Непрерывная случайная величина $X$ задана следующей функцией распределения $F(x)=\left\{\begin{matrix}
0,\ x\le 0\\ 
x,\ 0 < x\le 1\\ 
1,\ x>1
\end{matrix}\right.$. Вероятность попадания случайной величины $X$ в интервал $\left(0,3;0,7\right)$ можем найти как разность значений функции распределения $F\left(x\right)$ на концах этого интервала, то есть:

$$P\left(0,3 < X < 0,7\right)=F\left(0,7\right)-F\left(0,3\right)=0,7-0,3=0,4.$$ 

Плотность распределения вероятностей

Функция $f\left(x\right)={F}'(x)$ называется плотностью распределения вероятностей, то есть это производная первого порядка, взятая от самой функции распределения $F\left(x\right)$.

Свойства функции $f\left(x\right)$.

1. $f\left(x\right)\ge 0$.

2. $\int^x_{-\infty }{f\left(t\right)dt}=F\left(x\right)$.

3. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$ — это $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Геометрически это означает, что вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ равна площади криволинейной трапеции, которая будет ограничена графиком функции $f\left(x\right)$, прямыми $x=\alpha ,\ x=\beta $ и осью $Ox$.

4. $\int^{+\infty }_{-\infty }{f\left(x\right)}=1$.

Пример 2. Непрерывная случайная величина $X$ задана следующей функцией распределения $F(x)=\left\{\begin{matrix}
0,\ x\le 0\\ 
x,\ 0 < x\le 1\\ 
1,\ x>1
\end{matrix}\right.$. Тогда функция плотности $f\left(x\right)={F}'(x)=\left\{\begin{matrix}
0,\ x\le 0 \\ 
1,\ 0 < x\le 1\\ 
0,\ x>1
\end{matrix}\right.$

Математическое ожидание непрерывной случайной величины

Математическое ожидание непрерывной случайной величины $X$ вычисляется по формуле

$$M\left(X\right)=\int^{+\infty }_{-\infty }{xf\left(x\right)dx}.$$ 

Пример 3. Найдем $M\left(X\right)$ для случайной величины $X$ из примера $2$.

$$M\left(X\right)=\int^{+\infty }_{-\infty }{xf\left(x\right)\ dx}=\int^1_0{x\ dx}={{x^2}\over {2}}\bigg|_0^1={{1}\over {2}}.$$ 

Дисперсия непрерывной случайной величины

Дисперсия непрерывной случайной величины $X$ вычисляется по формуле

$$D\left(X\right)=\int^{+\infty }_{-\infty }{x^2f\left(x\right)\ dx}-{\left[M\left(X\right)\right]}^2.$$ 

Пример 4. Найдем $D\left(X\right)$для случайной величины $X$ из примера $2$.

$$D\left(X\right)=\int^{+\infty }_{-\infty }{x^2f\left(x\right)\ dx}-{\left[M\left(X\right)\right]}^2=\int^1_0{x^2\ dx}-{\left({{1}\over {2}}\right)}^2={{x^3}\over {3}}\bigg|_0^1-{{1}\over {4}}={{1}\over {3}}-{{1}\over {4}}={{1}\over{12}}.$$ 

Данная статья полезна?
×