Поделиться
Дискретные двумерные случайные величины
Опубликовал Wikimatik , 3 Января 2017 по предмету "Теория вероятностей"

Дискретные двумерные случайные величины

Довольно часто при изучении случайных величин приходится иметь дело с двумя, тремя и даже большим числом случайных величин. Например, двумерной случайной величиной  $\left(X,\ Y\right)$ будет описываться точка попадания снаряда, где случайные величины $X,\ Y$ абсцисса и ордината соответственно. Успеваемость наудачу взятого студента в период сессии характеризуется $n$-мерной случайной величиной $\left(X_1,\ X_2,\ \dots ,\ X_n\right)$, где случайные величины $X_1,\ X_2,\ \dots ,\ X_n$ — это оценки, проставленные в зачетной книжке по различным дисциплинам.

Набор $n$ случайных величин $\left(X_1,\ X_2,\ \dots ,\ X_n\right)$ называется случайным вектором. Мы ограничимся рассмотрением случая $\left(X,\ Y\right)$. 

Пусть $X$ — дискретная случайная величина с возможными значениями $x_1,x_2,\ \dots ,\ x_n$, а $Y$ — дискретная случайная величина с возможными значениями $y_1,y_2,\ \dots ,\ y_n$.

Тогда дискретная двумерная случайная величина $\left(X,\ Y\right)$ может принимать значения $\left(x_i,\ y_j\right)$ с вероятностями $p_{ij}=P\left(\left(X=x_i\right)\left(Y=y_j\right)\right)=P\left(X=x_i\right)P\left(Y=y_j|X=x_i\right)$. Здесь $P\left(Y=y_j|X=x_i\right)$ — это условная вероятность того, что случайная величина $Y$ примет значение $y_j$ при условии, что случайная величина $X$ приняла значение $x_i$.

Вероятность того, что случайная величина $X$ примет значение $x_i$, равна $p_i=\sum_j{p_{ij}}$. Вероятность того, что случайная величина $Y$ примет значение $y_j$, равна $q_j=\sum_i{p_{ij}}$.

Если считать, что событие $Y=y_j$ произошло, то распределение случайной величины $X$ при условии $Y=y_j$ называется условным распределением случайной величины $X$ при условии $Y=y_j$. Тогда: 

$$P\left(X=x_i|Y=y_j\right)={{P\left(\left(X=x_i\right)\left(Y=y_j\right)\right)}\over {P\left(Y=y_j\right)}}={{p_{ij}}\over {q_j}}.$$ 

Если считать, что событие $X=x_i$ произошло, то распределение случайной величины $Y$ при условии $X=x_i$ называется условным распределением случайной величины $Y$ при условии $X=x_i$. Тогда: 

$$P\left(Y=y_j|X=x_i\right)={{P\left(\left(X=x_i\right)\left(Y=y_j\right)\right)}\over {P\left(X=x_i\right)}}={{p_{ij}}\over {p_i}}.$$ 

Пример 1. Задано распределение двумерной случайной величины:

$\begin{array}{|c|c|}
\hline
 X\backslash Y & 2 & 3 \\
\hline
 -1 & 0,15 & 0,25 \\
\hline
0 & 0,28 & 0,13 \\
\hline
1 & 0,09 & 0,1 \\
\hline
\end{array}$

Определим законы распределения случайных величин $X$ и $Y$. Найдем условные распределения случайной величины $X$ при условии $Y=2$ и случайной величины $Y$ при условии $X=0$.

Заполним следующую таблицу:

$\begin{array}{|c|c|}
\hline
X\backslash Y & 2 & 3 & p_i & p_{ij}/q_1 \\
\hline
-1 & 0,15 & 0,25 & 0,4 & 0,29 \\
\hline
0 & 0,28 & 0,13 & 0,41 & 0,54 \\
\hline
1 & 0,09 & 0,1 & 0,19 & 0,17 \\
\hline
q_j & 0,52 & 0,48 & 1 & \\
\hline
p_{ij}/p_2 & 0,68 & 0,32 &  & \\
\hline
1 & 0,09 & 0,1 \\
\hline
\end{array}$

Поясним, как заполняется таблица. Значения первых трех столбцов первых четырех строк взяты из условия. Сумму чисел $2$-го и $3$-го столбцов $2$-й ($3$-й) строки укажем в $4$-м столбце $2$-й ($3$-й) строки. Сумму чисел $2$-го и $3$-го столбцов $4$-й строки укажем в $4$-м столбце $4$-й строки.

Сумму чисел $2$-й, $3$-й и $4$-й строк $2$-го ($3$-го) столбца запишем в $5$-й строке $2$-го ($3$-го) столбца. Каждое число $2$-го столбца делим на $q_1=0,52$, результат округляем до двух цифр после запятой и пишем в $5$-м столбце. Числа из $2$-го и $3$-го столбцов $3$-й строки делим на $p_2=0,41$, результат округляем до двух цифр после запятой и пишем в последней строке.

Тогда закон распределения случайной величины $X$ имеет следующий вид.

$\begin{array}{|c|c|}
\hline
X & -1 & 0 & 1 \\
\hline
p_i & 0,4 & 0,41 & 0,19 \\
\hline
\end{array}$


Закон распределения случайной величины $Y$.

$\begin{array}{|c|c|}
\hline
Y & 2 & 3 \\
\hline
q_j & 0,52 & 0,48 \\
\hline
\end{array}$

Условное распределение случайной величины $X$ при условии $Y=2$ имеет следующий вид.

$\begin{array}{|c|c|}
\hline
X & -1 & 0 & 1 \\
\hline
p_{ij}/q_1 & 0,29 & 0,54 & 0,17 \\
\hline
\end{array}$

Условное распределение случайной величины $Y$ при условии $X=0$ имеет следующий вид.

$\begin{array}{|c|c|}
\hline
Y & 2 & 3 \\
\hline
p_{ij}/p_2 & 0,68 & 0,32 \\
\hline
\end{array}$

Пример 2. Имеем шесть карандашей, среди которых два красных. Раскладываем карандаши в две коробки. В первую кладут $2$ штуки, а во вторую тоже два. $X$ — количество красных карандашей в первой коробке, a $Y$ — во второй. Написать закон распределения системы случайных величин $(X,\ Y)$.

Пусть дискретная случайная величина $X$ — количество красных карандашей в первой коробке, а дискретная случайная величина $Y$ — количество красных карандашей во второй коробке. Возможные значения случайных величин $X,\ Y$ соответственно $X:0,\ 1,\ 2$, $Y:0,\ 1,\ 2$. Тогда дискретная двумерная случайная величина $\left(X,\ Y\right)$ может принимать значения $\left(x,\ y\right)$ с вероятностями $P=P\left(\left(X=x\right)\times \left(Y=y\right)\right)=P\left(X=x\right)\times P\left(Y=y|X=x\right)$, где $P\left(Y=y|X=x\right)$ — условная вероятность того, что случайная величина $Y$ примет значение $y$ при условии, что случайная величина $X$ приняла значение $x$. Изобразим соответствие между значениями $\left(x,\ y\right)$ и вероятностями $P\left(\left(X=x\right)\times \left(Y=y\right)\right)$ в виде следующей таблицы.

$\begin{array}{|c|c|}
\hline
X\backslash Y & 0 & 1 & 2 \\
\hline
0 & {{1}\over {15}} & {{4}\over {15}} & {{1}\over {15}} \\
\hline
1 & {{4}\over {15}} & {{4}\over {15}} & 0 \\
\hline
2 & {{1}\over {15}} & 0 & 0 \\
\hline
\end{array}$

По строкам такой таблицы указываются значения $X$, а по столбцам значения $Y$, тогда вероятности $P\left(\left(X=x\right)\times \left(Y=y\right)\right)$ указываются на пересечении соответствующей строки и столбца. Рассчитаем вероятности, используя классическое определение вероятности и теорему произведения вероятностей зависимых событий.

$$P\left(\left(X=0\right)\left(Y=0\right)\right)={{C^2_4}\over {C^2_6}}\cdot {{C^2_2}\over {C^2_4}}={{6}\over {15}}\cdot {{1}\over {6}}={{1}\over {15}};$$ 

$$P\left(\left(X=0\right)\left(Y=1\right)\right)={{C^2_4}\over {C^2_6}}\cdot {{C^1_2\cdot C^1_2}\over {C^2_4}}={{6}\over {15}}\cdot {{2\cdot 2}\over {6}}={{4}\over {15}};$$ 

$$P\left(\left(X=0\right)\left(Y=2\right)\right)={{C^2_4}\over {C^2_6}}\cdot {{C^2_2}\over {C^2_4}}={{6}\over {15}}\cdot {{1}\over {6}}={{1}\over {15}};$$ 

$$P\left(\left(X=1\right)\left(Y=0\right)\right)={{C^1_2\cdot C^1_4}\over {C^2_6}}\cdot {{C^2_3}\over {C^2_4}}={{2\cdot 4}\over {15}}\cdot {{3}\over {6}}={{4}\over {15}};$$ 

$$P\left(\left(X=1\right)\left(Y=1\right)\right)={{C^1_2\cdot C^1_4}\over {C^2_6}}\cdot {{C^1_1\cdot C^1_3}\over {C^2_4}}={{2\cdot 4}\over {15}}\cdot {{1\cdot 3}\over {6}}={{4}\over {15}};$$ 

$$P\left(\left(X=2\right)\left(Y=0\right)\right)={{C^2_2}\over {C^2_6}}\cdot {{C^2_4}\over {C^2_4}}={{1}\over {15}}\cdot 1={{1}\over {15}}.$$ 

Поскольку в законе распределения (полученной таблице) все множество событий образует полную группу событий, то сумма вероятностей должна быть равна 1. Проверим это:

$$\sum_{i,\ j}{p_{ij}}={{1}\over {15}}+{{4}\over {15}}+{{1}\over {15}}+{{4}\over {15}}+{{4}\over {15}}+{{1}\over {15}}=1.$$ 

Функция распределения двумерной случайной величины

Функцией распределения двумерной случайной величины $\left(X,\ Y\right)$ называется функция $F\left(x,\ y\right)$, которая для любых действительных чисел $x$ и $y$ равна вероятности совместного выполнения двух событий $\left\{X < x\right\}$ и $\left\{Y < y\right\}$. Таким образом, по определению

$$F\left(x,\ y\right)=P\left\{X < x,\ Y < y\right\}.$$ 

Для дискретной двумерной случайной величины функция распределения находится путем суммирования всех вероятностей $p_{ij}$, для которых $x_i < x,\ y_j < y$, то есть

$$F\left(x,\ y\right)=\sum_{x_i < x}{\sum_{y_j < y}{p_{ij}}}.$$ 

Свойства функции распределения двумерной случайной величины.

1. Функция распределения $F\left(x,\ y\right)$ является ограниченной, то есть $0\le F\left(x,\ y\right)\le 1$.

2. $F\left(x,\ y\right)$ не убывающая для каждого из своих аргументов при фиксированном другом, то есть $F\left(x_2,\ y\right)\ge F\left(x_1,\ y\right)$ при $x_2>x_1$, $F\left(x,\ y_2\right)\ge F\left(x,\ y_1\right)$ при $y_2>y_1$.

3. Если хотя бы один из аргументов принимает значение $-\infty $, то функция распределения будет равна нулю, то есть $F\left(-\infty ,\ y\right)=F\left(x,\ -\infty \right),\ F\left(-\infty ,\ -\infty \right)=0$.

4. Если оба аргумента принимают значение $+\infty $, то функция распределения будет равна $1$, то есть $F\left(+\infty ,\ +\infty \right)=1$.

5. В том случае, когда ровно один из аргументов принимает значение $+\infty $, функция распределения $F\left(x,\ y\right)$ становится функцией распределения случайной величины, соответствующей другому элементу, то есть $F\left(x,\ +\infty \right)=F_1\left(x\right)=F_X\left(x\right),\ F\left(+\infty ,\ y\right)=F_y\left(y\right)=F_Y\left(y\right)$.

6. $F\left(x,\ y\right)$ является непрерывной слева для каждого из своих аргументов, то есть

$${\mathop{lim}_{x\to x_0-0} F\left(x,\ y\right)\ }=F\left(x_0,\ y\right),\ {\mathop{lim}_{y\to y_0-0} F\left(x,\ y\right)\ }=F\left(x,\ y_0\right).$$ 

Пример 3. Пусть дискретная двумерная случайная величина $\left(X,\ Y\right)$ задана рядом распределения.

$\begin{array}{|c|c|}
\hline
X\backslash Y & 0 & 1 \\
\hline
0 & {{1}\over {6}} & {{2}\over {6}} \\
\hline
1 & {{2}\over {6}} & {{1}\over {6}} \\
\hline
\end{array}$

Тогда функция распределения:

$F(x,y)=\left\{\begin{matrix}
0,\ при\ x\le 0,\ y\le 0 \\ 
0,\ при\ x\le 0,\ 0 < y\le 1 \\
0,\ при\ x\le 0,\ y>1 \\
0,\ при\ 0 < x\le 1,\ y\le 0 \\
{{1}\over {6}},\ при\ 0 < x\le 1,\ 0 < y\le 1 \\
{{1}\over {6}}+{{2}\over {6}}={{1}\over {2}},\ при\ 0 < x\le 1,\ y>1 \\
0,\ при\ x>1,\ y\le 0 \\
{{1}\over {6}}+{{2}\over {6}}={{1}\over {2}},\ при\ x>1,\ 0 < y\le 1 \\
{{1}\over {6}}+{{2}\over {6}}+{{2}\over {6}}+{{1}\over {6}}=1,\ при\ x>1,\ y>1 \\
\end{matrix}\right.$

Данная статья полезна?
×