Поделиться
Независимые случайные величины
Опубликовал Wikimatik , 3 Января 2017 по предмету "Теория вероятностей"

Независимые случайные величины. Операции над случайными величинами.

Две случайные величины $X$ и $Y$ называются независимыми, если закон распределения одной случайной величины не изменяется от того, какие возможные значения приняла другая случайная величина. То есть, для любых $x$ и $y$ события $X=x$ и $Y=y$ являются независимыми. Поскольку события $X=x$ и $Y=y$ независимые, то по теореме произведения вероятностей независимых событий $P\left(\left(X=x\right)\left(Y=y\right)\right)=P\left(X=x\right)P\left(Y=y\right)$.

Пример 1. Пусть случайная величина $X$ выражает денежный выигрыш по билетам одной лотереи «Русское лото», а случайная величина $Y$ выражает денежный выигрыш по билетам другой лотереи «Золотой ключ». Очевидно, что случайные величины $X,\ Y$ будут независимыми, так как выигрыш по билетам одной лотереи не зависит от закона распределения выигрышей по билетам другой лотереи. В том случае, когда случайные величины $X,\ Y$ выражали бы выигрыш по одной и той же лотереи, то, очевидно, данные случайные величины были бы зависимыми.

Пример 2. Двое рабочих трудятся в разных цехах и изготавливают различные изделия, несвязанные между собой технологиями изготовления и используемым сырьем. Закон распределения числа бракованных изделий, изготовленных первым рабочим за смену, имеет следующий вид:

$\begin{array}{|c|c|}
\hline
 Число \ бракованных \ изделий \ x & 0 & 1 \\
\hline
 Вероятность & 0,8 & 0,2 \\
\hline
\end{array}$

Число бракованных изделий, изготовленных вторым рабочим за смену, подчиняется следующими закону распределения.

$\begin{array}{|c|c|}
\hline
 Число \ бракованных \ изделий \ y & 0 & 1 \\
\hline
 Вероятность & 0,7 & 0,3 \\
\hline
\end{array}$

Найдем закон распределения числа бракованных изделий, изготовленных двумя рабочими за смену. 

Пусть случайная величина $X$ — число бракованных изделий, изготовленных первым рабочим за смену, а $Y$ — число бракованных изделий, изготовленных вторым рабочим за смену. По условию, случайные величины $X,\ Y$ независимы.

Число бракованных изделий, изготовленных двумя рабочими за смену, есть случайная величина $X+Y$. Ее возможные значения равны $0,\ 1$ и $2$. Найдем вероятности, с которыми случайная величина $X+Y$ принимает свои значения.

$P\left(X+Y=0\right)=P\left(X=0,\ Y=0\right)=P\left(X=0\right)P\left(Y=0\right)=0,8\cdot 0,7=0,56.$ 

$P\left(X+Y=1\right)=P\left(X=0,\ Y=1\ или\ X=1,\ Y=0\right)=P\left(X=0\right)P\left(Y=1\right)+P\left(X=1\right)P\left(Y=0\right)=0,8\cdot 0,3+0,2\cdot 0,7=0,38.$ 

$P\left(X+Y=2\right)=P\left(X=1,\ Y=1\right)=P\left(X=1\right)P\left(Y=1\right)=0,2\cdot 0,3=0,06.$ 

Тогда закон распределения числа бракованных изделий, изготовленных двумя рабочими за смену:

$\begin{array}{|c|c|}
\hline
 Число \ бракованных \ изделий & 0 & 1 & 2 \\
\hline
 Вероятность & 0,56 & 0,38 & 0,06 \\
\hline
\end{array}$

В предыдущем примере мы выполняли операцию над случайными величинами $X,\ Y$, а именно находили их сумму $X+Y$. Дадим теперь более строгое определение операций (сложение, разность, умножение) над случайными величинами и приведем примеры решений.

Определение 1. Произведением $kX$ случайной величины $X$ на постоянную величину $k$ называется случайная величина, которая принимает значения $kx_i$ с теми же вероятностями $p_i$ $\left(i=1,\ 2,\ \dots ,\ n\right)$.

Определение 2. Суммой (разностью или произведением) случайных величин $X$ и $Y$ называется случайная величина, которая принимает все возможные значения вида $x_i+y_j$ ($x_i-y_i$ или $x_i\cdot y_i$), где $i=1,\ 2,\dots ,\ n$, с вероятностями $p_{ij}$ того, что случайная величина $X$ примет значение $x_i$, а $Y$ значение $y_j$: 

$$p_{ij}=P\left[\left(X=x_i\right)\left(Y=y_j\right)\right].$$

Так как случайные величины $X,\ Y$ независимые, то по теореме умножения вероятностей для независимых событий: $p_{ij}=P\left(X=x_i\right)\cdot P\left(Y=y_j\right)=p_i\cdot p_j$.

Пример 3. Независимые случайные величины $X,\ Y$ заданы своими законами распределения вероятностей.

$\begin{array}{|c|c|}
\hline
 x_i & -8 & 2 & 3 \\
\hline
 p_i & 0,4 & 0,1 & 0,5 \\
\hline
\end{array}$

$\begin{array}{|c|c|}
\hline
 y_i & 2 & 8 \\
\hline
 p_i & 0,3 & 0,7 \\
\hline
\end{array}$

Составим закон распределения случайной величины $Z=2X+Y$. Суммой случайных величин $X$ и $Y$, то есть $X+Y$, называется случайная величина, которая принимает все возможные значения вида $x_i+y_j$, где $i=1,\ 2,\dots ,\ n$, с вероятностями $p_{ij}$ того, что случайная величина $X$ примет значение $x_i$, а $Y$ значение $y_j$: $p_{ij}=P\left[\left(X=x_i\right)\left(Y=y_j\right)\right]$. Так как случайные величины $X,\ Y$ независимые, то по теореме умножения вероятностей для независимых событий: $p_{ij}=P\left(X=x_i\right)\cdot P\left(Y=y_j\right)=p_i\cdot p_j$.

Итак, имеет законы распределения случайных величины $2X$ и $Y$ соответственно.

$\begin{array}{|c|c|}
\hline
x_i & -16 & 4 & 6 \\
\hline
 p_i & 0,4 & 0,1 & 0,5 \\
\hline
\end{array}$

$\begin{array}{|c|c|}
\hline
y_i & 2 & 8 \\
\hline
 p_i & 0,3 & 0,7 \\
\hline
\end{array}$

Для удобства нахождения всех значений суммы $Z=2X+Y$ и их вероятностей составим вспомогательную таблицу, в каждой клетке которой поместим в левом углу значения суммы $Z=2X+Y$, а в правом углу — вероятности этих значений, полученные в результате перемножения вероятностей соответствующих значений случайных величин $2X$ и $Y$.

В результате получим распределение $Z=2X+Y$:

$\begin{array}{|c|c|}
\hline
z_i & -14 & -8 & 6 & 12 & 10 & 16 \\
\hline
 p_i & 0,12 & 0,28 & 0,03 & 0,07 & 0,15 & 0,35 \\
\hline
\end{array}$

Данная статья полезна?
×